Formation of a quantum spin Hall state on a Ge(111) surface.
نویسندگان
چکیده
Using first-principles density functional theory (DFT) hybrid functional calculations, we demonstrate the formation of a quantum spin Hall (QSH) state on a Ge(111) surface. We show that a 1/3 monolayer (ML) Cl-covered Ge(111) surface offers an ideal template for metal, such as Bi, deposition into a stable hexagonal overlayer 2D lattice, which we refer to as Bi@Cl-Ge(111). The band structure and band topology of Bi@Cl-Ge(111) are analyzed with respect to the effect of spin-orbit coupling (SOC). The Bi@Cl-Ge(111) exhibits a QSH state with a band gap of 0.54 eV. In contrast, the Au@Cl-Ge(111) is found to be a trivial semiconducting surface. The Ge(111) substrate acts as an orbital filter to critically select the orbital composition around the Fermi level. Our findings offer another possible system for experimental exploration of the growth of 2D topological materials on conventional semiconductor substrates, where the 2D overlayer is atomically bonded to, but electronically decoupled from, the underlying substrate, exhibiting an isolated topological quantum state inside the substrate band gap.
منابع مشابه
Quantum Spin Hall States in Stanene/Ge(111)
For topological insulators to be implemented in practical applications, it is a prerequisite to select suitable substrates that are required to leave insulators' nontrivial properties and sizable opened band gaps (due to spin-orbital couplings) unaltered. Using ab initio calculations, we predict that Ge(111) surface qualified as a candidate to support stanene sheets, because the band structure ...
متن کاملEpitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface.
Formation of topological quantum phase on a conventional semiconductor surface is of both scientific and technological interest. Here, we demonstrate epitaxial growth of 2D topological insulator, i.e., quantum spin Hall state, on Si(111) surface with a large energy gap, based on first-principles calculations. We show that the Si(111) surface functionalized with one-third monolayer of halogen at...
متن کاملFormation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling
For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We sho...
متن کاملElectrically tunable quantum spin Hall state in topological crystalline insulator thin films
Based on electronic structure calculations and theoretical analysis, we predict the (111) thin films of the SnTe class of three-dimensional (3D) topological crystalline insulators (TCIs) realize the quantum spin Hall phase in a wide range of thicknesses. The nontrivial topology originates from the intersurface coupling of the topological surface states of TCIs in the 3D limit. The intersurface ...
متن کاملThe theoretical study of adsorption of HCN gas on the surface of pristine, Ge, P and GeP-doped (4, 4) armchair BNNTs
In this research, the effects of HCN adsorption on the surface of the pristine, Ge, P, and GeP doped boron nitride nanotube (BNNTs) are investigated by using density function theory at the B3LYP/6–31G(d, p) level of theory. At the first step, we consider different configurations for adsorbing HCN molecule on the surface of BNNTs. The optimized models are used to calculate the structural, electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2016